论文标题

使用图神经网络在ICECUBE上的宇宙射线组成分析

Cosmic-Ray Composition analysis at IceCube using Graph Neural Networks

论文作者

Koundal, Paras

论文摘要

Icecube Neutrino天文台是一种多组分检测器,该检测器嵌入了南部冰中的深处。该程序将讨论来自IceCube及其表面阵列ICETOP的综合操作的分析,以估计宇宙射线的组成。这项工作将描述一种基于图形神经网络的新方法,用于估计原发性宇宙射线的质量,该方法利用了信号 - 足迹信息和重建的宇宙射线淋浴参数。此外,这项工作还将引入新的成分敏感参数,以改善宇宙射线成分的估计,从而有可能提高我们对宇宙射线空气淋浴中高能MUON含量的理解。

The IceCube Neutrino Observatory is a multi-component detector embedded deep within the South-Pole Ice. This proceeding will discuss an analysis from an integrated operation of IceCube and its surface array, IceTop, to estimate cosmic-ray composition. The work will describe a novel graph neural network based approach for estimating the mass of primary cosmic rays, that takes advantage of signal-footprint information and reconstructed cosmic-ray air shower parameters. In addition, the work will also introduce new composition-sensitive parameters for improving the estimation of cosmic-ray composition, with the potential of improving our understanding of the high-energy muon content in cosmic-ray air showers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源