论文标题

自适应riemannian空间中的自我监督的持续图形学习

Self-Supervised Continual Graph Learning in Adaptive Riemannian Spaces

论文作者

Sun, Li, Ye, Junda, Peng, Hao, Wang, Feiyang, Yu, Philip S.

论文摘要

持续的图形学习通常会在各种现实世界应用中找到其作用,其中包含不同任务的图形数据顺序出现。尽管先前的工作取得了成功,但它仍然面临着巨大的挑战。一方面,现有的方法与零源性欧几里得空间一起工作,并且在很大程度上忽略了曲率在即将到来的图序列中变化的事实。另一方面,文献中的持续学习者依赖于丰富的标签,但是实践中的标签图特别困难,尤其是对于不断新兴的图表而言,尤其是在直觉上。为了应对上述挑战,我们建议探索一个具有挑战性但实用的问题,在自适应里曼尼亚人的空间中自见的持续图形学习。在本文中,我们提出了一个新颖的自我监督的Riemannian图形持续学习者(Riegrace)。在Riegrace中,我们首先设计了一个自适应的Riemannian GCN(Adargcn),这是一个统一的GCN,并与神经曲率适配器相结合,因此Riemannian空间由学习的曲率​​适应每个图。然后,我们提出了一种无标签的Lorentz蒸馏方法,其中我们为图形序列创建了教师学生Adargcn。该学生依次从自身手中进行内部阶段,并从老师的跨阶段进行了依据,以便在没有灾难性遗忘的情况下巩固知识。特别是,我们提出了理论上扎根的广义洛伦兹投影,以用于黎曼空间中的对比度蒸馏。基准数据集上的广泛实验显示了Riegrace的优势,此外,我们研究了曲率如何在图序列上变化。

Continual graph learning routinely finds its role in a variety of real-world applications where the graph data with different tasks come sequentially. Despite the success of prior works, it still faces great challenges. On the one hand, existing methods work with the zero-curvature Euclidean space, and largely ignore the fact that curvature varies over the coming graph sequence. On the other hand, continual learners in the literature rely on abundant labels, but labeling graph in practice is particularly hard especially for the continuously emerging graphs on-the-fly. To address the aforementioned challenges, we propose to explore a challenging yet practical problem, the self-supervised continual graph learning in adaptive Riemannian spaces. In this paper, we propose a novel self-supervised Riemannian Graph Continual Learner (RieGrace). In RieGrace, we first design an Adaptive Riemannian GCN (AdaRGCN), a unified GCN coupled with a neural curvature adapter, so that Riemannian space is shaped by the learnt curvature adaptive to each graph. Then, we present a Label-free Lorentz Distillation approach, in which we create teacher-student AdaRGCN for the graph sequence. The student successively performs intra-distillation from itself and inter-distillation from the teacher so as to consolidate knowledge without catastrophic forgetting. In particular, we propose a theoretically grounded Generalized Lorentz Projection for the contrastive distillation in Riemannian space. Extensive experiments on the benchmark datasets show the superiority of RieGrace, and additionally, we investigate on how curvature changes over the graph sequence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源