论文标题
哪个Urbanik类$ L_K $,双曲线和广义逻辑特征属性属于?
Which Urbanik class $L_k$, do the hyperbolic and the generalized logistic characteristic functions belong to?
论文作者
论文摘要
从一系列拉普拉斯(双重指数)变量获得的自定义变量是本研究的对象。我们证明了双曲线丝和双曲线骨变量在Urbanik类的差异$ L_2 $和$ L_3 $的差异,而通用的Logistic变量至少在Urbanik类$ L_1 $中。因此,那些相应的自我分配特征函数的某种比率再次可以自我分配。
Selfdecomposable variables obtained from series of Laplace (double exponential) variables are objects of this study. We proved that hyperbolic-sine and hyperbolic-cosine variables are in the difference of the Urbanik classes $L_2$ and $L_3$ while generalized logistic variable is at least in the Urbanik class $L_1$. Hence some ratios of those corresponding selfdecomposable characteristic functions are again selfdecomposable.