论文标题
希尔伯特太空的纠缠岛
Entanglement Islands from Hilbert Space Reduction
论文作者
论文摘要
在本文中,我们提出了一种从纯粹的量子信息的角度来产生量子系统中纠缠岛的机制。更明确地表明,如果我们通过在希尔伯特空间中投射某些状态对量子系统施加了某些限制,那么对于保留在缩小的希尔伯特空间中的所有状态,就可能会退出该州的$ i_a $,其状态已编码在另一个子集$ \ nathcal $ \ \ \ \ \ \ \ \ rathcal {r} r} _a _a _a _a $中。然后,子集$ \ {i_a \} $只是相应子集的纠缠岛$ \ {\ Mathcal {r} _a \} $。我们称这种系统为自编码,发现这种系统中的纠缠熵应通过新岛公式计算。我们在重力理论中进行了新岛公式和岛屿公式之间的比较。受我们的机制的启发,我们提出了在这种情况下通过全息CFT $ _2 $对广告/BCFT对应和岛屿相模拟的模拟,并具有特殊的Weyl转换。
In this paper we propose a mechanism to generate entanglement islands in quantum systems from a purely quantum information perspective. More explicitly we show that, if we impose certain constraints on a quantum system by projecting out certain states in the Hilbert space, it is possible that for all the states remaining in the reduced Hilbert space, there exits subsets $I_a$ whose states are encoded in the states of another subset $\mathcal{R}_a$. Then the subsets $\{I_a\}$ are just the entanglement islands of the corresponding subsets $\{\mathcal{R}_a\}$. We call such a system self-encoded, and find that the entanglement entropy in such systems should be calculated by a new island formula. We give a comparison between our new island formula and island formula in gravitational theories. Inspired by our mechanism, we propose a simulation of the AdS/BCFT correspondence and the island phases in this context via a holographic CFT$_2$ with a special Weyl transformation.