论文标题

Quadformer:空中图像电源线分割中无监督域的适应性四倍变压器

QuadFormer: Quadruple Transformer for Unsupervised Domain Adaptation in Power Line Segmentation of Aerial Images

论文作者

Rao, Pratyaksh Prabhav, Qiao, Feng, Zhang, Weide, Xu, Yiliang, Deng, Yong, Wu, Guangbin, Zhang, Qiang

论文摘要

对航空图像中电源线的准确分割对于确保航空车的飞行安全性至关重要。培训深度学习模型的高质量地面真理注释是一个费力的过程。因此,高度要求开发可以从标记的合成数据到未标记的真实图像的知识来利用知识的算法。在无监督的域适应性(UDA)中研究了此过程。自我训练的最新方法在UDA中取得了出色的性能,用于语义分割,该模型在目标域上具有伪标签。但是,由于两个数据分布的差异,伪标签是嘈杂的。我们确定上下文依赖性对于弥合此域间隙很重要。在此激励的情况下,我们提出了Quadformer,这是一个专为域自适应语义分割而设计的新型框架。层次四连变压器结合了跨注意事项和自我注意解机制,以适应可转移的环境。基于跨努力和自我训练的特征表示,我们引入了伪标签校正方案,以在线DenoISE伪标签并减少域间隙。此外,我们提出了两个数据集-Arplsyn和Arplreal,以进一步提高无监督域自适应电力线细分的研究。最后,实验结果表明,我们的方法在Arplsyn $ \ rightarrow $ tttpla和arplsyn $ \ rightarrow $ arplreal上实现了域自适应电源线细分的最新性能。

Accurate segmentation of power lines in aerial images is essential to ensure the flight safety of aerial vehicles. Acquiring high-quality ground truth annotations for training a deep learning model is a laborious process. Therefore, developing algorithms that can leverage knowledge from labelled synthetic data to unlabelled real images is highly demanded. This process is studied in Unsupervised domain adaptation (UDA). Recent approaches to self-training have achieved remarkable performance in UDA for semantic segmentation, which trains a model with pseudo labels on the target domain. However, the pseudo labels are noisy due to a discrepancy in the two data distributions. We identify that context dependency is important for bridging this domain gap. Motivated by this, we propose QuadFormer, a novel framework designed for domain adaptive semantic segmentation. The hierarchical quadruple transformer combines cross-attention and self-attention mechanisms to adapt transferable context. Based on cross-attentive and self-attentive feature representations, we introduce a pseudo label correction scheme to online denoise the pseudo labels and reduce the domain gap. Additionally, we present two datasets - ARPLSyn and ARPLReal to further advance research in unsupervised domain adaptive powerline segmentation. Finally, experimental results indicate that our method achieves state-of-the-art performance for the domain adaptive power line segmentation on ARPLSyn$\rightarrow$TTTPLA and ARPLSyn$\rightarrow$ARPLReal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源