论文标题

基于联合学习的无细胞大规模MIMO系统,用于隐私保护

Federated Learning-Based Cell-Free Massive MIMO System for Privacy-Preserving

论文作者

Zhang, Jiayi, Zhang, Jing, Ng, Derrick Wing Kwan, Ai, Bo

论文摘要

无细胞的大型MIMO(CF MMIMO)是实现联合学习(FL)的有前途的下一代无线体系结构。但是,在实践中,用户设备(UES)的敏感信息可能会暴露于所涉及的访问点或中央处理单元。为了确保数据隐私,本文定义了有效的隐私机制。特别是,我们证明并表征了利用固有的量化误差的可能性,这是由低分辨率类似物到数字转换器(ADC)和数字到Analog转换器(DACS)引起的,用于在FL CF MMIMO系统中提供隐私性。此外,为了减少这种系统中所需的上行链路训练时间,一个随机的非凸设计问题共同优化发射功率和数据速率。为了解决手头的问题,我们通过利用连续的凸近似方法来获得次优溶液,提出了一种新型的功率控制方法。此外,还建立了一种异步方案,以减轻散曲效应以促进FL。数值结果表明,与常规的全功率传输相比,采用拟议的功率控制方法可以有效地减少各种实际系统设置下的上行链路训练时间。同样,我们提出的异步方法可以揭示我们的结果可以减少中央处理单元的等待时间,以接收所有用户信息,因为没有散漫者需要很长时间来报告其本地更新。

Cell-free massive MIMO (CF mMIMO) is a promising next generation wireless architecture to realize federated learning (FL). However, sensitive information of user equipments (UEs) may be exposed to the involved access points or the central processing unit in practice. To guarantee data privacy, effective privacy-preserving mechanisms are defined in this paper. In particular, we demonstrate and characterize the possibility in exploiting the inherent quantization error, caused by low-resolution analog-to-digital converters (ADCs) and digital-to-analog converters (DACs), for privacy-preserving in a FL CF mMIMO system. Furthermore, to reduce the required uplink training time in such a system, a stochastic non-convex design problem that jointly optimizing the transmit power and the data rate is formulated. To address the problem at hand, we propose a novel power control method by utilizing the successive convex approximation approach to obtain a suboptimal solution. Besides, an asynchronous protocol is established for mitigating the straggler effect to facilitate FL. Numerical results show that compared with the conventional full power transmission, adopting the proposed power control method can effectively reduce the uplink training time under various practical system settings. Also, our results unveil that our proposed asynchronous approach can reduce the waiting time at the central processing unit for receiving all user information, as there are no stragglers that requires a long time to report their local updates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源