论文标题
NEAF:学习点正常估计的神经角场
NeAF: Learning Neural Angle Fields for Point Normal Estimation
论文作者
论文摘要
在3D计算机视觉中,非结构化点云的正常估计是一项重要任务。当前方法通过将局部斑块映射到普通向量或使用神经网络学习局部表面拟合来实现令人鼓舞的结果。但是,这些方法并不能很好地概括地看不见的情况,并且对参数设置很敏感。为了解决这些问题,我们提出了一个隐式函数,以学习球形坐标系在每个点的正常状态周围的角度场,该坐标系统被称为神经角场(NEAF)。我们没有直接预测输入点的法线,而是预测地面真相正常与随机采样查询正常之间的角度偏移。该策略推动了网络观察更多多样化的样本,这会以更强大的方式导致更高的预测准确性。为了在推理时从学习的角度字段预测态度,我们在单位球形空间中随机采样查询向量,并以最小角度值作为预测的正常值以最小的角度值。为了进一步利用NEAF学到的先前学到的知识,我们建议通过最大程度地减少角度偏移来完善预测的正常向量。合成数据和实际扫描的实验结果表明,在广泛使用的基准下,对最先进的结果有了显着改善。
Normal estimation for unstructured point clouds is an important task in 3D computer vision. Current methods achieve encouraging results by mapping local patches to normal vectors or learning local surface fitting using neural networks. However, these methods are not generalized well to unseen scenarios and are sensitive to parameter settings. To resolve these issues, we propose an implicit function to learn an angle field around the normal of each point in the spherical coordinate system, which is dubbed as Neural Angle Fields (NeAF). Instead of directly predicting the normal of an input point, we predict the angle offset between the ground truth normal and a randomly sampled query normal. This strategy pushes the network to observe more diverse samples, which leads to higher prediction accuracy in a more robust manner. To predict normals from the learned angle fields at inference time, we randomly sample query vectors in a unit spherical space and take the vectors with minimal angle values as the predicted normals. To further leverage the prior learned by NeAF, we propose to refine the predicted normal vectors by minimizing the angle offsets. The experimental results with synthetic data and real scans show significant improvements over the state-of-the-art under widely used benchmarks.