论文标题

抗铁磁绝缘子中的域壁泄漏的集成和开火神经元的建议

A proposal for leaky integrate-and-fire neurons by domain walls in antiferromagnetic insulators

论文作者

Brehm, Verena, Austefjord, Johannes W., Lepadatu, Serban, Qaiumzadeh, Alireza

论文摘要

与常规的von Neumann结构相比,受脑启发的神经形态计算是通往下一代模拟计算机的有前途的途径。一种可以模仿人脑行为的神经形态计算的模型是尖峰神经网络(SNN),其中最成功的一个模型是泄漏的集成和火(LIF)模型。由于常规的互补金属 - 氧化物 - 高导体(CMOS)设备并非用于建模神经网络,并且在网络应用中的能量效率低下,因此最近重点转向了基于Spintronic的神经网络。在这项工作中,利用抗铁磁绝缘子的优势,我们提出了一种非易失性镁神经元,该神经元可能是LIF尖峰神经元网络的基础。在我们的提案中,在存在磁各向异性梯度的存在下模仿具有渗漏,整合和射击特性的生物神经元的抗磁磁体壁。该单个神经元受偏振抗磁性镁的控制,通过磁场脉冲或自旋转移扭矩机制激活,并且具有类似于生物神经元的特性,即潜伏期,折射,爆发和抑制作用。我们认为,基于抗铁磁域壁的这种提出的单个神经元比以前提出的基于铁磁系统的神经元相比具有更快的功能。

Brain-inspired neuromorphic computing is a promising path towards next generation analogue computers that are fundamentally different compared to the conventional von Neumann architecture. One model for neuromorphic computing that can mimic the human brain behavior are spiking neural networks (SNNs), of which one of the most successful is the leaky integrate-and-fire (LIF) model. Since conventional complementary metal-oxide-semiconductor (CMOS) devices are not meant for modelling neural networks and are energy inefficient in network applications, recently the focus shifted towards spintronic-based neural networks. In this work, using the advantage of antiferromagnetic insulators, we propose a non-volatile magnonic neuron that could be the building block of a LIF spiking neuronal network. In our proposal, an antiferromagnetic domain wall in the presence of a magnetic anisotropy gradient mimics a biological neuron with leaky, integrating, and firing properties. This single neuron is controlled by polarized antiferromagnetic magnons, activated by either a magnetic field pulse or a spin transfer torque mechanism, and has properties similar to biological neurons, namely latency, refraction, bursting and inhibition. We argue that this proposed single neuron, based on antiferromagnetic domain walls, is faster and has more functionalities compared to previously proposed neurons based on ferromagnetic systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源