论文标题
SAFESPACE MFNET:精确有效的多次无人机检测网络
SafeSpace MFNet: Precise and Efficient MultiFeature Drone Detection Network
论文作者
论文摘要
通常被称为无人机的无人机(UAV)的越来越多的患病率产生了对可靠检测系统的需求。无人机的不当使用会带来潜在的安全性和隐私危害,尤其是有关敏感设施的危害。为了克服这些障碍,我们提出了MultifeAturenet(MFNET)的概念,该解决方案通过捕获最集中的特征图来增强特征表示。此外,我们介绍了多曲霉特征注意(MFNET-FA),该技术可适应输入特征图的不同通道。为了满足多尺度检测的要求,我们介绍了MFNET和MFNET-FA的版本,即小(S),中(M)和大(L)。结果揭示了显着的性能提高。为了获得最佳的鸟类检测,MFNET-M(消融研究2)的精度令人印象深刻为99.8 \%,而对于无人机检测,MFNET-L(消融研究2)的精度得分为97.2 \%。在选择中,MFNET-FA-S(消融研究3)是最具资源效率的替代方案,考虑到其较小的特征地图大小,计算需求(GFLOPS)和操作效率(以每秒帧为单位)。这使其特别适合在功能有限的硬件上部署。此外,由于FA模块的掺入,MFNET-FA-S(消融研究3)在其快速的实时推理和多物体检测方面脱颖而出。提出的具有焦点模块的MFNET-L(消融研究2)表明了最显着的分类结果,平均精度为98.4 \%,平均召回率为96.6 \%,平均平均平均精度(MAP)为98.3 \%\%,平均值为72.8 \%。为了鼓励可重复的研究,数据集和MFNET代码可作为开源项目免费提供:github.com/zeeshankaleem/multifeaturenet。
The increasing prevalence of unmanned aerial vehicles (UAVs), commonly known as drones, has generated a demand for reliable detection systems. The inappropriate use of drones presents potential security and privacy hazards, particularly concerning sensitive facilities. To overcome those obstacles, we proposed the concept of MultiFeatureNet (MFNet), a solution that enhances feature representation by capturing the most concentrated feature maps. Additionally, we present MultiFeatureNet-Feature Attention (MFNet-FA), a technique that adaptively weights different channels of the input feature maps. To meet the requirements of multi-scale detection, we presented the versions of MFNet and MFNet-FA, namely the small (S), medium (M), and large (L). The outcomes reveal notable performance enhancements. For optimal bird detection, MFNet-M (Ablation study 2) achieves an impressive precision of 99.8\%, while for UAV detection, MFNet-L (Ablation study 2) achieves a precision score of 97.2\%. Among the options, MFNet-FA-S (Ablation study 3) emerges as the most resource-efficient alternative, considering its small feature map size, computational demands (GFLOPs), and operational efficiency (in frame per second). This makes it particularly suitable for deployment on hardware with limited capabilities. Additionally, MFNet-FA-S (Ablation study 3) stands out for its swift real-time inference and multiple-object detection due to the incorporation of the FA module. The proposed MFNet-L with the focus module (Ablation study 2) demonstrates the most remarkable classification outcomes, boasting an average precision of 98.4\%, average recall of 96.6\%, average mean average precision (mAP) of 98.3\%, and average intersection over union (IoU) of 72.8\%. To encourage reproducible research, the dataset, and code for MFNet are freely available as an open-source project: github.com/ZeeshanKaleem/MultiFeatureNet.