论文标题
捕获与相互空间神经网络的长期互动
Capturing long-range interaction with reciprocal space neural network
论文作者
论文摘要
机器学习(ML)的原子间模型和电位已广泛用于材料模拟中。在某些动力学行为受到显着影响的某些离子系统中,远程相互作用通常占主导地位。然而,在大多数ML的原子间电位中,不考虑远距离效应,例如库仑和范德尔斯电位。为了解决这个问题,我们提出了一种可以考虑大多数具有互惠空间神经网络的ML本地局部模型的方法。真实空间中的结构信息首先转换为相互空间,然后编码为相互空间电位或具有完整原子相互作用的全局描述符。相互的空间电位和描述符保持欧几里得对称性和细胞选择的完全不变性。从相互空间的信息中受益,可以扩展ML原子质模型,以描述不仅包括库仑,而且还包括任何其他远程相互作用的远程潜力。考虑库仑相互作用和具有缺陷的GAXNY系统的模型NACL系统用于说明我们的方法的优势。同时,我们的方法有助于提高某些全球属性的预测准确性,例如频带隙,其中局部原子环境以外的完整原子相互作用起着非常重要的作用。总而言之,我们的工作扩大了当前ML原子体模型和潜力在处理远程效果时的能力,因此为准确预测全球性能和具有缺陷的系统的大规模动态模拟铺平了一种新方法。
Machine Learning (ML) interatomic models and potentials have been widely employed in simulations of materials. Long-range interactions often dominate in some ionic systems whose dynamics behavior is significantly influenced. However, the long-range effect such as Coulomb and Van der Wales potential is not considered in most ML interatomic potentials. To address this issue, we put forward a method that can take long-range effects into account for most ML local interatomic models with the reciprocal space neural network. The structure information in real space is firstly transformed into reciprocal space and then encoded into a reciprocal space potential or a global descriptor with full atomic interactions. The reciprocal space potential and descriptor keep full invariance of Euclidean symmetry and choice of the cell. Benefiting from the reciprocal-space information, ML interatomic models can be extended to describe the long-range potential including not only Coulomb but any other long-range interaction. A model NaCl system considering Coulomb interaction and the GaxNy system with defects are applied to illustrate the advantage of our approach. At the same time, our approach helps to improve the prediction accuracy of some global properties such as the band gap where the full atomic interaction beyond local atomic environments plays a very important role. In summary, our work has expanded the ability of current ML interatomic models and potentials when dealing with the long-range effect, hence paving a new way for accurate prediction of global properties and large-scale dynamic simulations of systems with defects.