论文标题

地球形式:欧几里得几何形状中的概括很少

Geoclidean: Few-Shot Generalization in Euclidean Geometry

论文作者

Hsu, Joy, Wu, Jiajun, Goodman, Noah D.

论文摘要

欧几里得几何形状是数学思维的最早形式之一。虽然其建筑物基础的几何原料(例如完美的线条和圆圈)并不经常出现在自然界中,但人类很少在与之感知和理性。在自然图像上训练的计算机视觉模型会显示出对欧几里得几何形状相同的敏感性吗?在这里,我们通过研究欧几里得几何构造宇宙中的几乎没有概括来探讨这些问题。我们介绍了Geoclidean,这是一种针对欧几里得几何的特定领域的语言,并使用它来生成两个几何概念学习任务的数据集,以基准对人类和机器的概括进行基准测试。我们发现,人类确实对欧几里得几何形状敏感,并从几何概念的一些视觉示例中强烈概括。相比之下,自然图像预测的标准计算机视觉模型的低级和高级视觉特征不支持正确的概括。因此,Geoclidean代表了几何概念学习的新型概括基准,其中人类和AI模型的性能分歧。 Geoclidean框架和数据集可公开下载。

Euclidean geometry is among the earliest forms of mathematical thinking. While the geometric primitives underlying its constructions, such as perfect lines and circles, do not often occur in the natural world, humans rarely struggle to perceive and reason with them. Will computer vision models trained on natural images show the same sensitivity to Euclidean geometry? Here we explore these questions by studying few-shot generalization in the universe of Euclidean geometry constructions. We introduce Geoclidean, a domain-specific language for Euclidean geometry, and use it to generate two datasets of geometric concept learning tasks for benchmarking generalization judgements of humans and machines. We find that humans are indeed sensitive to Euclidean geometry and generalize strongly from a few visual examples of a geometric concept. In contrast, low-level and high-level visual features from standard computer vision models pretrained on natural images do not support correct generalization. Thus Geoclidean represents a novel few-shot generalization benchmark for geometric concept learning, where the performance of humans and of AI models diverge. The Geoclidean framework and dataset are publicly available for download.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源