论文标题
黑洞地平线边缘分区功能
Black Hole Horizon Edge Partition Functions
论文作者
论文摘要
我们通过DENEF,HARTNOLL和SACHDEV(DHS)将1循环黑洞决定因素的公式扩展到任何$(D+1)$ - 尺寸静态静态对称的黑洞上的旋转场。通过仔细分析对欧几里得特征功能的规律性条件,我们在1环的欧几里德分区函数中揭示了一个明确的散装式分裂,用于张紧整数旋转的张量领域:散装部分捕获了“经过重新叠加”的热量分区功能,该功能最近在Arxiv:2207.022024中;边缘部分与准模式(QNM)有关,这些模式(QNM)未能在分析上继续前往欧几里得模式的一个子集,其偏移幅度附近附近。由于边缘部分采用$ s^{d-1} $的路径积分的形式,因此这表明它们与洛伦兹(Lorentzian)双面黑洞几何形状的分叉表面上的自由度有关。对于静态BTZ和NARIAI黑色孔的大量载体上的较高自旋,我们发现边缘分区函数与QNM有关,QNM的QNM最低。
We extend a formula for 1-loop black hole determinants by Denef, Hartnoll, and Sachdev (DHS) to spinning fields on any $(d+1)$-dimensional static spherically symmetric black hole. By carefully analyzing the regularity condition imposed on the Euclidean eigenfunctions, we reveal an unambiguous bulk-edge split in the 1-loop Euclidean partition function for tensor fields of arbitrary integer spin: the bulk part captures the "renormalized" thermal canonical partition function recently discussed in arXiv:2207.07024; the edge part is related to quasinormal modes (QNMs) that fail to analytically continue to a subset of Euclidean modes with enhanced fall-offs near the origin. Since the edge part takes the form of a path integral on $S^{d-1}$, this suggests that these are associated with degrees of freedom living on the bifurcation surface in the Lorentzian two-sided black hole geometry. For massive higher spin on static BTZ and massive vector on Nariai black holes, we find that the edge partition function is related to the QNMs with lowest overtone numbers.