论文标题
黑暗能源调查年3年高红移样本:选择,表征和分析星系聚类
The Dark Energy Survey Year 3 high redshift sample: Selection, characterization and analysis of galaxy clustering
论文作者
论文摘要
像黑暗能源调查(DES)这样的成像星系调查的基准宇宙学分析通常在红移$ z <1 $上探测宇宙。这主要是因为这些调查的深度有限,也是因为这种分析在很大程度上取决于星系镜头,在低红移下,这更有效。在这项工作中,我们使用DES 3年数据介绍了高红移星系样品的选择和表征,并分析了它们的星系聚类测量值。特别是,我们使用的星系比上一年级的第3年分析和贝叶斯红移方案的星系定义了三个示波器垃圾箱,其平均红移约为$ z \ sim \ sim 0.9 $,$ 1.2 $和$ 1.5 $,这大大扩展了对三年级DES DES 3年级分析的红移覆盖范围。这些样品总共包含大约900万个星系,它们的星系密度比DES 3年级基金情况下的星系高2倍以上。我们表征了样品的红移不确定性,包括使用各种光谱和高质量的红移样品,并开发了一种机器学习方法来纠正星系密度与调查观察条件之间的相关性。 The analysis of galaxy clustering measurements, with a total signal-to-noise $S/N \sim 70$ after scale cuts, yields robust cosmological constraints on a combination of the fraction of matter in the Universe $Ω_m$ and the Hubble parameter $h$, $Ω_m h = 0.195^{+0.023}_{-0.018}$, and 2-3%星系聚类信号振幅的测量值,探测星系偏差和物质波动的幅度,$bσ_8$。伴侣纸$ \ textit {(在准备中)} $将介绍这些高$ z $样品的互相关,并带有来自Planck和SPT的CMB镜头,以及这些测量结果与这项工作中呈现的星系聚类的宇宙学分析。
The fiducial cosmological analyses of imaging galaxy surveys like the Dark Energy Survey (DES) typically probe the Universe at redshifts $z < 1$. This is mainly because of the limited depth of these surveys, and also because such analyses rely heavily on galaxy lensing, which is more efficient at low redshifts. In this work we present the selection and characterization of high-redshift galaxy samples using DES Year 3 data, and the analysis of their galaxy clustering measurements. In particular, we use galaxies that are fainter than those used in the previous DES Year 3 analyses and a Bayesian redshift scheme to define three tomographic bins with mean redshifts around $z \sim 0.9$, $1.2$ and $1.5$, which significantly extend the redshift coverage of the fiducial DES Year 3 analysis. These samples contain a total of about 9 million galaxies, and their galaxy density is more than 2 times higher than those in the DES Year 3 fiducial case. We characterize the redshift uncertainties of the samples, including the usage of various spectroscopic and high-quality redshift samples, and we develop a machine-learning method to correct for correlations between galaxy density and survey observing conditions. The analysis of galaxy clustering measurements, with a total signal-to-noise $S/N \sim 70$ after scale cuts, yields robust cosmological constraints on a combination of the fraction of matter in the Universe $Ω_m$ and the Hubble parameter $h$, $Ω_m h = 0.195^{+0.023}_{-0.018}$, and 2-3% measurements of the amplitude of the galaxy clustering signals, probing galaxy bias and the amplitude of matter fluctuations, $b σ_8$. A companion paper $\textit{(in preparation)}$ will present the cross-correlations of these high-$z$ samples with CMB lensing from Planck and SPT, and the cosmological analysis of those measurements in combination with the galaxy clustering presented in this work.