论文标题
使用星系生长可观察的校准宇宙学模拟,并具有隐性的可能性推断
Calibrating cosmological simulations with implicit likelihood inference using galaxy growth observables
论文作者
论文摘要
在采用隐式可能性推理(ILI)(也称为无可能推理的)的新型方法中,我们校准了针对观察结果的宇宙学水动力模拟的参数,由于这些模拟的高计算成本,以前是不可行的。为了计算效率,我们将神经网络作为模拟器训练骆驼项目的〜1000个宇宙学模拟,以估算模拟的可观测物,作为输入宇宙学和天体物理参数,并将这些模拟器用作宇宙学模拟的替代物。使用宇宙恒星的形成速率密度(SFRD),并在不同的红移下单独使用出色的质量函数(SMF),我们对选定的宇宙学和天体物理参数(Omega_M,Sigma_8,Sigma_8,Stellar风反馈和动力学黑洞反馈)进行ILI,并获得完整的6Dimensity Poperter poperter Explients。在性能测试中,来自模拟SFRD(SMF)的ILI可以以0.17%(0.4%)的相对误差恢复目标可观察物。我们发现,通过新的完整宇宙学模拟证实,从模拟的SFRD推断出的参数之间存在二分化。我们还发现SMF可以打破SFRD中的退化性,这表明SMF提供了参数的互补约束。此外,我们发现,从观察性的SFRD推断的参数组合可以很好地重现SFRD的目标,而在SMF的情况下,被推断的和观察到的SMF显示出显着的差异,表明当前的Galaxy形成模型和/或或校准框架和系统差异的差异表明了潜在的局限性局限性。
In a novel approach employing implicit likelihood inference (ILI), also known as likelihood-free inference, we calibrate the parameters of cosmological hydrodynamic simulations against observations, which has previously been unfeasible due to the high computational cost of these simulations. For computational efficiency, we train neural networks as emulators on ~1000 cosmological simulations from the CAMELS project to estimate simulated observables, taking as input the cosmological and astrophysical parameters, and use these emulators as surrogates to the cosmological simulations. Using the cosmic star formation rate density (SFRD) and, separately, stellar mass functions (SMFs) at different redshifts, we perform ILI on selected cosmological and astrophysical parameters (Omega_m, sigma_8, stellar wind feedback, and kinetic black hole feedback) and obtain full 6-dimensional posterior distributions. In the performance test, the ILI from the emulated SFRD (SMFs) can recover the target observables with a relative error of 0.17% (0.4%). We find that degeneracies exist between the parameters inferred from the emulated SFRD, confirmed with new full cosmological simulations. We also find that the SMFs can break the degeneracy in the SFRD, which indicates that the SMFs provide complementary constraints for the parameters. Further, we find that the parameter combination inferred from an observationally-inferred SFRD reproduces the target observed SFRD very well, whereas, in the case of the SMFs, the inferred and observed SMFs show significant discrepancies that indicate potential limitations of the current galaxy formation modeling and calibration framework, and/or systematic differences and inconsistencies between observations of the stellar mass function.