论文标题
样品复杂性,用于评估副本因素不确定性下鲁棒线性观察者的性能
Sample Complexity for Evaluating the Robust Linear Observers Performance under Coprime Factors Uncertainty
论文作者
论文摘要
本文介绍了在封闭环中学习的端到端样本复杂性,用于固定的状态反馈增益时,基于状态估计器的稳健H2控制器(可能是不稳定的)线性时间不变(LTI)系统。我们基于Ding等人的结果。 (1994年)弥合所有状态估计者的参数化与著名的Youla参数化之间的差距。在固定的状态反馈增益中,重新安装相关闭环的表达式可以使最佳的线性观察者问题作为Youla参数中的凸问题重新铸造。可靠的合成过程是通过考虑植物副例状因子上有界的加性模型不确定性来执行的,从而通过观察者方法为鲁棒的H2控制器提出了最小 - 最大优化问题。闭环标识方案遵循Zhang等人。 (2021),其中通过使用Sarkar等人的普通最小二乘算法构建来自嘈杂的,有限的长度输入输入数据的单个时间序列中的汉克尔样矩阵来识别真正植物的标称模型。 (2020)。最后,提供了在估计模型误差上的H-敌度,因为稳健的合成过程需要模型的副本因素上有界的添加剂不确定性。
This paper addresses the end-to-end sample complexity bound for learning in closed loop the state estimator-based robust H2 controller for an unknown (possibly unstable) Linear Time Invariant (LTI) system, when given a fixed state-feedback gain. We build on the results from Ding et al. (1994) to bridge the gap between the parameterization of all state-estimators and the celebrated Youla parameterization. Refitting the expression of the relevant closed loop allows for the optimal linear observer problem given a fixed state feedback gain to be recast as a convex problem in the Youla parameter. The robust synthesis procedure is performed by considering bounded additive model uncertainty on the coprime factors of the plant, such that a min-max optimization problem is formulated for the robust H2 controller via an observer approach. The closed-loop identification scheme follows Zhang et al. (2021), where the nominal model of the true plant is identified by constructing a Hankel-like matrix from a single time-series of noisy, finite length input-output data by using the ordinary least squares algorithm from Sarkar et al. (2020). Finally, a H-infinity bound on the estimated model error is provided, as the robust synthesis procedure requires bounded additive uncertainty on the coprime factors of the model.