论文标题
由于HBN单层之间的Moiré封装,双层石墨烯中平坦带的强栅极可承受性能
Strong gate-tunability of flat bands in bilayer graphene due to moiré encapsulation between hBN monolayers
论文作者
论文摘要
当使用六边形硼氮化物(HBN)作为石墨烯的底物时,所得的moiré模式会产生次要狄拉克点。通过将多层石墨烯封装在对齐的HBN板上,受控的Moiré堆叠可能会带来更丰富的好处。在原子上删除的异质结构上使用高级紧密结合模拟,在这里我们表明,可以在选定的Moiré堆叠配置中打开次要狄拉克点的差距,并且独立于异质结构的任何其他垂直门控。另一方面,门控可以在主要迪拉克点上广泛调整差距,因此可能会强烈压缩第一个莫伊尔迷你频段,宽度为莫伊尔诱发的差距在次级迪拉克点。我们透露,在HBN封装的双层石墨烯中,这种新型机制可以导致孤立的带子在中等门控下比10 〜MeV倾斜的孤立条带,因此根据需要提出方便的途径通向电子控制的强相关状态。
When using hexagonal boron-nitride (hBN) as a substrate for graphene, the resulting moiré pattern creates secondary Dirac points. By encapsulating a multilayer graphene within aligned hBN sheets the controlled moiré stacking may offer even richer benefits. Using advanced tight-binding simulations on atomistically-relaxed heterostructures, here we show that the gap at the secondary Dirac point can be opened in selected moiré-stacking configurations, and is independent of any additional vertical gating of the heterostructure. On the other hand, gating can broadly tune the gap at the principal Dirac point, and may thereby strongly compress the first moiré mini-band in width against the moiré-induced gap at the secondary Dirac point. We reveal that in hBN-encapsulated bilayer graphene this novel mechanism can lead to isolated bands flatter than 10~meV under moderate gating, hence presenting a convenient pathway towards electronically-controlled strongly-correlated states on demand.