论文标题
负载概况介绍缺失负载数据恢复和基线估计
Load Profile Inpainting for Missing Load Data Restoration and Baseline Estimation
论文作者
论文摘要
本文介绍了基于生成的对抗网(GAN),负载配置文件介入网络(LOAD-PIN),用于恢复缺失的负载数据段并估算需求响应事件的基线。输入是在介入期之前和之后的时间序列加载数据以及解释变量(例如,天气数据)。我们提出了一个由粗网络和微调网络组成的发电机结构。粗网络提供了介入期间数据段的初始估计。微调网络由自我发挥的块和封闭式卷积层组成,用于调整初始估计。损失函数是专门为微型调整和歧视网络设计的,以增强结果的点对点精度和现实性。我们在三个现实世界数据集上测试了两个应用程序的负载针:修补丢失的数据和衍生的降低基准(CVR)事件。我们使用五种现有的深度学习方法对负载针的性能进行基准测试。我们的仿真结果表明,与最先进的方法相比,Load Pin可以处理不同长度的数据事件,并提高了15-30%的精度。
This paper introduces a Generative Adversarial Nets (GAN) based, Load Profile Inpainting Network (Load-PIN) for restoring missing load data segments and estimating the baseline for a demand response event. The inputs are time series load data before and after the inpainting period together with explanatory variables (e.g., weather data). We propose a Generator structure consisting of a coarse network and a fine-tuning network. The coarse network provides an initial estimation of the data segment in the inpainting period. The fine-tuning network consists of self-attention blocks and gated convolution layers for adjusting the initial estimations. Loss functions are specially designed for the fine-tuning and the discriminator networks to enhance both the point-to-point accuracy and realisticness of the results. We test the Load-PIN on three real-world data sets for two applications: patching missing data and deriving baselines of conservation voltage reduction (CVR) events. We benchmark the performance of Load-PIN with five existing deep-learning methods. Our simulation results show that, compared with the state-of-the-art methods, Load-PIN can handle varying-length missing data events and achieve 15-30% accuracy improvement.