论文标题

中央集和无限单色指数模式

Central sets and infinite monochromatic exponential patterns

论文作者

Di Nasso, Mauro, Ragosta, Mariaclara

论文摘要

我们使用中央集合的组合特性来证明存在指数单色模式的结果,以Hindman的有限总和为定理。更确切地说,我们证明,对于自然数的每种有限着色,都存在一个无限的序列,因此所有合适的指数构型源自其独特的元素都是单色的,包括指数塔。 (对考虑要素的顺序有一些限制。)

We use the combinatorial properties of central sets to prove a result about the existence of exponential monochromatic patterns, in the style of Hindman's Finite Sums Theorem. More precisely, we prove that for every finite coloring of the natural numbers there exists an infinite sequence such that all suitable exponential configurations originating from its distinct elements are monochromatic, including towers of exponentiations. (Some restrictions apply on the order in which elements are considered.)

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源