论文标题
在低温温度下观察平面锗检测器中时间依赖性内电荷扩增
Observation of Time-Dependent Internal Charge Amplification in a Planar Germanium Detector at Cryogenic Temperature
论文作者
论文摘要
在低温温度下操作的平面锗(GE)检测器中,已经观察到通过撞击电离的时间依赖性内电荷扩增。在应用偏置电压后的30和45分钟的时间段中,对应于$^{241} $ AM源的59.54 keV $γ$射线的电荷能在短时间内放大,然后再降回基线。电荷能的放大在很大程度上取决于施加的正偏置电压,并在整个检测器上露出孔。在探测器上电子漂移,没有这种现象可见。我们发现,观察到的电荷放大是由带电状态的影响电离决定的,这与杂质水平和应用电场具有很强的相关性。我们分析了负责产生和影响状态的影响电离的主要物理机制。我们的分析表明,GE检测器中适当的杂质水平可以通过影响带电状态的电离电离以达到极低能量检测阈值($ <$ 10 MEV)来提高电荷产量,如果可以稳定电荷放大,则可以为MEV规定的暗物质搜索搜索。
For the first time, time-dependent internal charge amplification through impact ionization has been observed in a planar germanium (Ge) detector operated at cryogenic temperature. In a time period of 30 and 45 minutes after applying a bias voltage, the charge energy corresponding to a baseline of the 59.54 keV $γ$ rays from a $^{241}$Am source is amplified for a short period of time and then decreases back to the baseline. The amplification of charge energy depends strongly on the applied positive bias voltage with drifting holes across the detector. No such phenomenon is visible with drifting electrons across the detector. We find that the observed charge amplification is dictated by the impact ionization of charged states, which has a strong correlation with impurity level and applied electric field. We analyze the dominant physics mechanisms that are responsible for the creation and the impact ionization of charged states. Our analysis suggests that the appropriate level of impurity in a Ge detector can enhance charge yield through the impact ionization of charged states to achieve extremely low-energy detection threshold ($<$ 10 meV) for MeV-scale dark matter searches if the charge amplification can be stabilized.