论文标题
使用无监督的深度学习来识别稀有皮质折叠模式
Identification of Rare Cortical Folding Patterns using Unsupervised Deep Learning
论文作者
论文摘要
像指纹一样,即使它们遵循特定于物种的组织,皮质折叠模式也是每个大脑所独有的。一些折叠模式与神经发育障碍有关。但是,由于个体间的差异很高,因此可能成为生物标志物的稀有折叠模式的识别仍然是非常复杂的任务。本文提出了一种新颖的无监督深度学习方法,以识别稀有的折叠模式并评估可以检测到的偏差程度。为此,我们预处理大脑MR图像将学习集中在折叠形态上,并训练Beta-vae以建模折叠的个体间变异性。我们使用合成基准和一种与中央沟相关的实际稀有配置进行了比较潜在空间和重建误差的检测能力。最后,我们评估方法对位于另一个区域的发育异常的概括。我们的结果表明,该方法可以根据β-VAE的生成能力来启发和更好地解释相关的折叠特性。潜在空间和重建错误带来了互补的信息,并能够识别不同性质的罕见模式。该方法很好地概括到另一个数据集上的另一个区域。代码可在https://github.com/neurospin-projects/2022_lguillon_rare_folding_detection获得。
Like fingerprints, cortical folding patterns are unique to each brain even though they follow a general species-specific organization. Some folding patterns have been linked with neurodevelopmental disorders. However, due to the high inter-individual variability, the identification of rare folding patterns that could become biomarkers remains a very complex task. This paper proposes a novel unsupervised deep learning approach to identify rare folding patterns and assess the degree of deviations that can be detected. To this end, we preprocess the brain MR images to focus the learning on the folding morphology and train a beta-VAE to model the inter-individual variability of the folding. We compare the detection power of the latent space and of the reconstruction errors, using synthetic benchmarks and one actual rare configuration related to the central sulcus. Finally, we assess the generalization of our method on a developmental anomaly located in another region. Our results suggest that this method enables encoding relevant folding characteristics that can be enlightened and better interpreted based on the generative power of the beta-VAE. The latent space and the reconstruction errors bring complementary information and enable the identification of rare patterns of different nature. This method generalizes well to a different region on another dataset. Code is available at https://github.com/neurospin-projects/2022_lguillon_rare_folding_detection.