论文标题

活跃的3D双线辅助多用户通信:通过贝叶斯学习的两个基于两段的单独渠道估算

Active 3D Double-RIS-Aided Multi-User Communications: Two-Timescale-Based Separate Channel Estimation via Bayesian Learning

论文作者

Yang, Songjie, Lyu, Wanting, Xiu, Yue, Zhang, Zhongpei, Yuen, Chau

论文摘要

双重可配置的智能表面(RIS)是一种有前途的技术,与单杆技术相比,增益大幅提高。但是,在双重辅助系统中,准确的通道估计比单盘辅助系统更具挑战性。这项工作解决了基于仅具有一个射频(RF)链的主动RIS体系结构的基于双RIS的通道估计的问题。由于可以使用主动RIS体系结构来获得缓慢的时变通道,即BS-RIS 1,BS-RIS 2和RIS 1-RIS 2通道,因此提出了一种新型的多用户两倍频道估计协议,以最大程度地减少飞行员的头顶。首先,我们为缓慢的时变通道估计提出了一个上行链路培训方案,该方案可以有效解决双重反射通道估计问题。借助Channels的Sparisty,低复杂性奇异值分解多个测量向量基于基于矢量的压缩传感(SVD-MMV-CS)框架,其视线线(LOS)辅助线(LOS)AID的离格网格预期最大化基于广义的广义近似近似近似消息传递(M-EM-EM-GAMP)alGorithM是通道参数回收的。对于快速时变的通道估计,基于估计的大型通道,开发了一个测量 - 启发 - 启发性(MAE)框架以减少飞行员开销。在此方面,对飞行员开销和计算复杂性进行了全面分析。最后,模拟结果证明了我们提出的多用户两次估计策略和低复杂性贝叶斯CS框架的有效性。

Double-reconfigurable intelligent surface (RIS) is a promising technique, achieving a substantial gain improvement compared to single-RIS techniques. However, in double-RIS-aided systems, accurate channel estimation is more challenging than in single-RIS-aided systems. This work solves the problem of double-RIS-based channel estimation based on active RIS architectures with only one radio frequency (RF) chain. Since the slow time-varying channels, i.e., the BS-RIS 1, BS-RIS 2, and RIS 1-RIS 2 channels, can be obtained with active RIS architectures, a novel multi-user two-timescale channel estimation protocol is proposed to minimize the pilot overhead. First, we propose an uplink training scheme for slow time-varying channel estimation, which can effectively address the double-reflection channel estimation problem. With channels' sparisty, a low-complexity Singular Value Decomposition Multiple Measurement Vector-Based Compressive Sensing (SVD-MMV-CS) framework with the line-of-sight (LoS)-aided off-grid MMV expectation maximization-based generalized approximate message passing (M-EM-GAMP) algorithm is proposed for channel parameter recovery. For fast time-varying channel estimation, based on the estimated large-timescale channels, a measurements-augmentation-estimate (MAE) framework is developed to decrease the pilot overhead.Additionally, a comprehensive analysis of pilot overhead and computing complexity is conducted. Finally, the simulation results demonstrate the effectiveness of our proposed multi-user two-timescale estimation strategy and the low-complexity Bayesian CS framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源