论文标题
在中子星中的无菌抗神经替那里人及其可观察到的后果
Dineutron decay into sterile anti-neutrinos in neutron stars and its observable consequences
论文作者
论文摘要
在标准模型(SM)的某些扩展中,允许两个中子通过新的标量玻色子腐烂到两个无菌的抗神经($ nn \ rightarrow \barχ\barχ$)中。这个过程违反了两个单位的baryon号码($ \ MATHCAL {B} $)和Lepton Number($ \ Mathcal {l} $),但保守了它们的差异$(\ Mathcal {B} - \ Mathcal {l})$。中子恒星包含大量中子,因此$ nn \ rightarrow \barχ\barχ$过程可以在中子恒星内得到很大的增强。这个过程可能导致非平凡效应与SM预测不同,并且可以通过天体物理和实验室观察来探索。此外,可以从中子恒星的内部发出大量的无菌抗肿瘤(可能是暗物质候选者)。发射颗粒的特性显示出特定的图案,可以由中子恒星的质量和半径唯一确定。此外,二元衰减可能有助于含有中子星的二元系统的轨道周期变化。我们分析了使用二进制轨道周期变化的观察结果来限制新标量玻色子质量的可能性。发现新的标量玻色子的质量在从1 TEV到几个TEV的范围内大致受到限制,这可能在LHC或未来的高能实验的直接搜索范围内。结合天体物理学和粒子现象学的联合分析可以为研究SM以外的新物理效应提供绝佳的机会。
In some extensions of the Standard Model (SM), two neutrons are allowed to decay into two sterile anti-neutrinos ($nn \rightarrow \barχ\barχ$) via new scalar bosons. This process violates both the baryon number ($\mathcal{B}$) and the lepton number ($\mathcal{L}$) by two units but conserves their difference $(\mathcal{B}-\mathcal{L})$. Neutron stars contain a large number of neutrons and thus the $nn \rightarrow \barχ\barχ$ process can be greatly enhanced inside a neutron star. This process could result in non-trivial effects that are different from the SM predictions and can be explored through astrophysical and laboratory observations. Furthermore, a large number of sterile antineutrinos, which may be dark matter candidates, can be emitted from the interior of the neutron star. The properties of the emitted particles show a particular pattern that can be uniquely determined by the mass and radius of the neutron star. In addition, the dineutron decay may contribute to the orbital-period change of the binary systems containing neutron stars. We analyze the possibility to constrain the mass of the new scalar bosons using the observations of the binary's orbital-period changes. It is found that the mass of the new scalar bosons is roughly restricted in the range from 1 TeV to several TeV, which is possibly within the reach of direct searches at the LHC or future high-energy experiments. The joint analysis which combines the astrophysics and particle phenomenology could provide an excellent opportunity for the study of the new physical effects beyond the SM.