论文标题

使用奇异向量的高维区块对角线协方差结构检测

High-Dimensional Block Diagonal Covariance Structure Detection Using Singular Vectors

论文作者

Bauer, Jan O.

论文摘要

独立子向量的假设在多元分析的许多方面出现。但是,在大多数现实世界中,我们缺乏有关子向量数量和每个子向量内的特定变量的先验知识。但是,测试所有这些组合是不可行的。例如,对于包含15个变量的数据矩阵,已经有1 382 958 545可能的组合。鉴于零相关性是独立性的必要条件,因此独立子向量表现出块对角线协方差矩阵。本文着重于在高维数据中检测这种块对角线协方差结构,因此还确定了不相关的子向量。我们的非参数方法利用了以下事实:协方差矩阵的结构是由其特征向量的结构反映的。但是,在样本情况下,噪声掩盖了真正的块对角结构。为了解决这个问题,我们建议使用样品特征向量的稀疏近似值来揭示种群特征向量的稀疏结构。值得注意的是,总平均值为零的数据矩阵的正确奇异向量与其协方差矩阵的样品特征向量相同。使用这些奇异向量而不是特征向量的稀疏近似值,可以使协方差矩阵过时。我们通过仿真演示方法的性能并提供真实的数据示例。本文的补充材料可在线获得。

The assumption of independent subvectors arises in many aspects of multivariate analysis. In most real-world applications, however, we lack prior knowledge about the number of subvectors and the specific variables within each subvector. Yet, testing all these combinations is not feasible. For example, for a data matrix containing 15 variables, there are already 1 382 958 545 possible combinations. Given that zero correlation is a necessary condition for independence, independent subvectors exhibit a block diagonal covariance matrix. This paper focuses on the detection of such block diagonal covariance structures in high-dimensional data and therefore also identifies uncorrelated subvectors. Our nonparametric approach exploits the fact that the structure of the covariance matrix is mirrored by the structure of its eigenvectors. However, the true block diagonal structure is masked by noise in the sample case. To address this problem, we propose to use sparse approximations of the sample eigenvectors to reveal the sparse structure of the population eigenvectors. Notably, the right singular vectors of a data matrix with an overall mean of zero are identical to the sample eigenvectors of its covariance matrix. Using sparse approximations of these singular vectors instead of the eigenvectors makes the estimation of the covariance matrix obsolete. We demonstrate the performance of our method through simulations and provide real data examples. Supplementary materials for this article are available online.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源