论文标题
kummer表面家族的较高的盘子周期
Higher Chow cycles on a family of Kummer surfaces
论文作者
论文摘要
我们在二维Kummer表面家族中构建了一组$(2,1)$(2,1)$的较高的家族,并证明对于非常普通的成员,他们在高等乔集团的不可分解的一部分中产生了等级$ \ ge 18 $的子组。周期的构建对家庭采取有限的小组行动,其线性独立性的证明使用Picard-fuchs差异操作员。
We construct a collection of families of higher Chow cycles of type $(2,1)$ on a 2-dimensional family of Kummer surfaces, and prove that for a very general member, they generate a subgroup of rank $\ge 18$ in the indecomposable part of the higher Chow group. Construction of the cycles uses a finite group action on the family, and the proof of their linear independence uses Picard-Fuchs differential operators.