论文标题

Erdős-rényi随机图上的避免色彩的渗透

Color-avoiding percolation on the Erdős-Rényi random graph

论文作者

Lichev, Lyuben, Schapira, Bruno

论文摘要

我们考虑了最近引入的避免色彩渗透的模型,定义为如下。图$ g $中的每个边缘均以$ k \ ge 2 $颜色的颜色为颜色。如果$ u $和$ v $可以使用$ k-1 $的任何子集连接,则据说两个顶点$ u $和$ v $ in $ g $是连接的。 CA连接性定义了$ g $的顶点集的等价关系,其类称为CA组件。 我们研究了恒定平均度的随机颜色Erdős-rényi随机图的组件结构。我们区分了最大组成部分规模的三个制度:超临界状态,所谓的中间制度和一个亚临界体制,其中最大的CA组件分别具有线性,对数和有限的大小。有趣的是,在亚临界方面,界限是确定性的,并且由颜色数量给出。

We consider a recently introduced model of color-avoiding percolation defined as follows. Every edge in a graph $G$ is colored in some of $k\ge 2$ colors. Two vertices $u$ and $v$ in $G$ are said to be CA-connected if $u$ and $v$ may be connected using any subset of $k-1$ colors. CA-connectivity defines an equivalence relation on the vertex set of $G$ whose classes are called CA-components. We study the component structure of a randomly colored Erdős-Rényi random graph of constant average degree. We distinguish three regimes for the size of the largest component: a supercritical regime, a so-called intermediate regime, and a subcritical regime, in which the largest CA-component has respectively linear, logarithmic, and bounded size. Interestingly, in the subcritical regime, the bound is deterministic and given by the number of colors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源