论文标题

与合成数据的训练对象检测模型的分析

Analysis of Training Object Detection Models with Synthetic Data

论文作者

Vanherle, Bram, Moonen, Steven, Van Reeth, Frank, Michiels, Nick

论文摘要

最近,合成训练数据的使用一直在上升,因为它以较低的成本提供了正确标记的数据集。该技术的缺点是,实际目标图像和合成训练数据之间所谓的域间隙导致性能下降。在本文中,我们试图提供有关如何使用合成数据进行对象检测的整体概述。我们分析生成数据的方面以及用于训练模型的技术。我们通过设计许多实验,即工业金属对象数据集(DIMO)的培训模型。该数据集包含真实图像和合成图像。合成部分具有不同的子集,它们是真实数据的精确合成拷贝,或者是具有随机方面的副本。这使我们能够分析哪种类型的变化有益于合成训练数据,以及应建模哪些方面以与目标数据紧密匹配。此外,我们研究了哪些类型的培训技术有益于对真实数据的概括以及如何使用它们。此外,我们分析了在合成图像上训练时如何利用真实图像。所有这些实验均在实际数据上进行验证,并将基准测试为对实际数据训练的模型。结果提供了许多有趣的外卖,可以用作使用合成数据进行对象检测的基本准则。可以在https://github.com/edm-research/dimo_objectDetection上获得复制结果的代码。

Recently, the use of synthetic training data has been on the rise as it offers correctly labelled datasets at a lower cost. The downside of this technique is that the so-called domain gap between the real target images and synthetic training data leads to a decrease in performance. In this paper, we attempt to provide a holistic overview of how to use synthetic data for object detection. We analyse aspects of generating the data as well as techniques used to train the models. We do so by devising a number of experiments, training models on the Dataset of Industrial Metal Objects (DIMO). This dataset contains both real and synthetic images. The synthetic part has different subsets that are either exact synthetic copies of the real data or are copies with certain aspects randomised. This allows us to analyse what types of variation are good for synthetic training data and which aspects should be modelled to closely match the target data. Furthermore, we investigate what types of training techniques are beneficial towards generalisation to real data, and how to use them. Additionally, we analyse how real images can be leveraged when training on synthetic images. All these experiments are validated on real data and benchmarked to models trained on real data. The results offer a number of interesting takeaways that can serve as basic guidelines for using synthetic data for object detection. Code to reproduce results is available at https://github.com/EDM-Research/DIMO_ObjectDetection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源