论文标题

在分析/综合管道中使用零证言者表示,在语音中隐藏了说话者的性别

Hiding speaker's sex in speech using zero-evidence speaker representation in an analysis/synthesis pipeline

论文作者

Noé, Paul-Gauthier, Miao, Xiaoxiao, Wang, Xin, Yamagishi, Junichi, Bonastre, Jean-François, Matrouf, Driss

论文摘要

在分析/综合管道中使用现代声码器,使我们能够研究可用于隐私目的的高质量语音转换。在这里,我们建议改变扬声器的嵌入和音高,以掩盖演讲者的性别。使用神经歧视分析方法保护了基于ECAPA-TDNN的扬声器表示供应Hifigan Vocoder,这与零证据的隐私概念一致。这种方法大大降低了与说话者性别有关的语音中的信息,同时保留了语音内容,并在受保护的声音中保持一致性。

The use of modern vocoders in an analysis/synthesis pipeline allows us to investigate high-quality voice conversion that can be used for privacy purposes. Here, we propose to transform the speaker embedding and the pitch in order to hide the sex of the speaker. ECAPA-TDNN-based speaker representation fed into a HiFiGAN vocoder is protected using a neural-discriminant analysis approach, which is consistent with the zero-evidence concept of privacy. This approach significantly reduces the information in speech related to the speaker's sex while preserving speech content and some consistency in the resulting protected voices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源