论文标题
使用前训练和语义丧失进行符号预测的神经特征适应
Neural Feature-Adaptation for Symbolic Predictions Using Pre-Training and Semantic Loss
论文作者
论文摘要
我们对由高级符号层组成的神经符号系统感兴趣,以在人类无能的概念方面进行解释的预测。以及一个低级神经层,用于提取产生符号解释所需的符号。实际数据通常是不完美的,这意味着即使符号理论保持不变,我们仍然需要解决将原始数据映射到高级符号的问题,每次数据采集环境或设备发生变化时。每次发生这种情况时,原始数据的手册(重新)注释是费力且昂贵的;自动标记方法通常是不完美的,尤其是对于复杂问题。 Neurolog提出了使用语义损失函数的使用,该功能允许现有的基于特征的符号模型指导使用“绑架”从原始数据中提取特征值。但是,证明通过绑架使用语义丢失的实验似乎在很大程度上依赖于特定领域的预处理步骤,该步骤可以先前描述原始数据中特征位置。我们检查了无法进行预处理或不明显的域中语义损失的使用。我们表明,如果没有有关特征的任何先前信息,即使具有实质性不正确的特征预测,神经方法也可以继续准确地预测。我们还表明,以甚至不完美的预训练形式的先前信息可以帮助纠正这种情况。这些发现在神经科所考虑的原始问题上复制,而无需使用特征限制。这表明,可以使用受绑架反馈约束的语义损失函数对域中的数据中构建的符号解释可以在相关域中重复使用。
We are interested in neurosymbolic systems consisting of a high-level symbolic layer for explainable prediction in terms of human-intelligible concepts; and a low-level neural layer for extracting symbols required to generate the symbolic explanation. Real data is often imperfect meaning that even if the symbolic theory remains unchanged, we may still need to address the problem of mapping raw data to high-level symbols, each time there is a change in the data acquisition environment or equipment. Manual (re-)annotation of the raw data each time this happens is laborious and expensive; and automated labelling methods are often imperfect, especially for complex problems. NEUROLOG proposed the use of a semantic loss function that allows an existing feature-based symbolic model to guide the extraction of feature-values from raw data, using `abduction'. However, the experiments demonstrating the use of semantic loss through abduction appear to rely heavily on a domain-specific pre-processing step that enables a prior delineation of feature locations in the raw data. We examine the use of semantic loss in domains where such pre-processing is not possible, or is not obvious. We show that without any prior information about the features, the NEUROLOG approach can continue to predict accurately even with substantially incorrect feature predictions. We show also that prior information about the features in the form of even imperfect pre-training can help correct this situation. These findings are replicated on the original problem considered by NEUROLOG, without the use of feature-delineation. This suggests that symbolic explanations constructed for data in a domain could be re-used in a related domain, by `feature-adaptation' of pre-trained neural extractors using the semantic loss function constrained by abductive feedback.