论文标题

线性复杂性Gibbs采样,用于广义标记的多重bernoulli滤波

Linear Complexity Gibbs Sampling for Generalized Labeled Multi-Bernoulli Filtering

论文作者

Shim, Changbeom, Vo, Ba-Tuong, Vo, Ba-Ngu, Ong, Jonah, Moratuwage, Diluka

论文摘要

在单对象过滤中类似于高斯的多个多对象系统应用中,会出现广义标记的多伯努利(GLMB)密度。但是,计算GLMB滤波密度需要解决NP硬化问题。为了减轻这种计算瓶颈,我们开发了用于GLMB密度计算的线性复杂性Gibbs采样框架。具体而言,我们提出了一个钢化GIBBS采样器,该采样器利用GLMB过滤密度的结构,以实现$ \ Mathcal {o}(t(p+m))$复杂性,其中$ t $是算法,$ p $和$ m $的迭代次数,是数量假设的对象和测量值。此创新使GLMB过滤器实现可以从$ \ Mathcal {O}(tp^{2} M)$复杂度到$ \ Mathcal {o}(T(p+m+m+\ log t)+pm)$。此外,所提出的框架为跟踪性能和计算负载之间的权衡提供了灵活性。建立了提出的Gibbs采样器的收敛性,并提供了数值研究以验证所提出的GLMB滤波器实现。

Generalized Labeled Multi-Bernoulli (GLMB) densities arise in a host of multi-object system applications analogous to Gaussians in single-object filtering. However, computing the GLMB filtering density requires solving NP-hard problems. To alleviate this computational bottleneck, we develop a linear complexity Gibbs sampling framework for GLMB density computation. Specifically, we propose a tempered Gibbs sampler that exploits the structure of the GLMB filtering density to achieve an $\mathcal{O}(T(P+M))$ complexity, where $T$ is the number of iterations of the algorithm, $P$ and $M$ are the number hypothesized objects and measurements. This innovation enables the GLMB filter implementation to be reduced from an $\mathcal{O}(TP^{2}M)$ complexity to $\mathcal{O}(T(P+M+\log T)+PM)$. Moreover, the proposed framework provides the flexibility for trade-offs between tracking performance and computational load. Convergence of the proposed Gibbs sampler is established, and numerical studies are presented to validate the proposed GLMB filter implementation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源