论文标题
基于多方传送能力的真正的多方纠缠措施
Genuine multipartite entanglement measures based on multi-party teleportation capability
论文作者
论文摘要
量化纠缠对于将纠缠作为量子信息处理的资源至关重要,并且为此目的提出了许多纠缠措施。当数学上定义纠缠度量时,我们应该考虑纠缠和可分离状态之间的区分性,局部转换下的不变性,本地操作和经典交流下的单调性以及凸性。这些是合理的要求,但可能不足,尤其是在考虑到多党量子信息处理中量子状态的有用性时。因此,如果我们想将多部分纠缠作为资源,那么当我们定义多部分纠缠措施时,有必要考虑量子状态在多方量子信息处理中的有用性。在本文中,我们根据三方传送能力定义了三个Qubit Systems的新的多方纠缠措施,并表明这些纠缠度量满足了真正的多部分纠缠措施的要求。我们还概括了$ n $ Qubit Systems的纠缠措施,其中$ n \ ge 4 $,并讨论这些数量可能是测量真正的多部分纠缠的好候选者。
Quantifying entanglement is vital to understand entanglement as a resource in quantum information processing, and many entanglement measures have been suggested for this purpose. When mathematically defining an entanglement measure, we should consider the distinguishability between entangled and separable states, the invariance under local transformation, the monotonicity under local operations and classical communication, and the convexity. These are reasonable requirements but may be insufficient, in particular when taking into account the usefulness of quantum states in multi-party quantum information processing. Therefore, if we want to investigate multipartite entanglement as a resource, then it can be necessary to consider the usefulness of quantum states in multi-party quantum information processing when we define a multipartite entanglement measure. In this paper, we define new multipartite entanglement measures for three-qubit systems based on the three-party teleportation capability, and show that these entanglement measures satisfy the requirements for being genuine multipartite entanglement measures. We also generalize our entanglement measures for $N$-qubit systems, where $N \ge 4$, and discuss that these quantities may be good candidates to measure genuine multipartite entanglement.