论文标题
B型星的初始自旋分布由年轻恒星簇的分裂主序列揭示
The initial spin distribution of B-type stars revealed by the split main sequences of young star clusters
论文作者
论文摘要
年轻开放簇中恒星的光谱观察结果揭示了恒星旋转速度的二分法分布的证据,其中10-30%的恒星缓慢旋转,其余70-90%旋转相当迅速。同时,年轻恒星簇的高精度多播放光度法显示了一个裂开的主序列,这再次被解释为自旋二分法。最近的论文表明,需要极端旋转来检索光度分裂。但是,我们的台面模型的新网格和普遍存在的循环模型表明,初始慢速(占线性开普勒旋转速度的0-35%)和中间体(50-65%的旋转速度的50-65%)旋转足以解释光度分裂。这些值与群集和田间恒星的最近光谱测量值一致,并且可能反映了上主序列恒星的出生自旋分布。最初更快的旋转恒星的一小部分可能能够在其主要序列演变结束时达到近乎危险的旋转,并在年轻恒星簇的关闭区域中产生恒星。但是,我们发现,恒星的存在最多要低于群集结节的倡导者,即二进制相互作用在创建恒星中的关键作用。我们认为表面化学成分测量可能有助于区分这两个是恒星形成通道。虽然只有最快的旋转,因此富含氮的恒星才能演变成恒星,质量前转移的旋转缓慢,而效率低下的积聚也可以轻微或不富集,即使在急剧旋转的积聚引起的是恒星中也可以进行。我们的结果为年轻和进化的B型主序列星的自旋分布的起源提供了新的启示。
Spectroscopic observations of stars in young open clusters have revealed evidence for a dichotomous distribution of stellar rotational velocities, with 10-30% of stars rotating slowly and the remaining 70-90% rotating fairly rapidly. At the same time, high-precision multiband photometry of young star clusters shows a split main sequence band, which is again interpreted as due to a spin dichotomy. Recent papers suggest that extreme rotation is required to retrieve the photometric split. Our new grids of MESA models and the prevalent SYCLIST models show, however, that initial slow (0-35% of the linear Keplerian rotation velocities) and intermediate (50-65% of the Keplerian rotation velocities) rotation are adequate to explain the photometric split. These values are consistent with the recent spectroscopic measurements of cluster and field stars, and are likely to reflect the birth spin distributions of upper main-sequence stars. A fraction of the initially faster-rotating stars may be able to reach near-critical rotation at the end of their main-sequence evolution and produce Be stars in the turn-off region of young star clusters. However, we find that the presence of Be stars up to two magnitudes below the cluster turnoff advocates for a crucial role of binary interaction in creating Be stars. We argue that surface chemical composition measurements may help distinguish these two Be star formation channels. While only the most rapidly rotating, and therefore nitrogen-enriched, single stars can evolve into Be stars, slow pre-mass-transfer rotation and inefficient accretion allows for mild or no enrichment even in critically rotating accretion-induced Be stars. Our results shed new light on the origin of the spin distribution of young and evolved B-type main sequence stars.