论文标题
完美张量的家庭
Families of Perfect Tensors
论文作者
论文摘要
完美的张量是对应于绝对最大纠缠状态的张量,这是一种特殊的量子信息理论感兴趣的量子状态。我们建立了一种使用lie理论的指数映射,以$(\ mathbb {c}^d)^{\ otimes 4} $计算完美张量的参数化家族。使用此方法,我们在$(\ Mathbb {C}^3)^{\ otimes 4} $中找到了非古典完美张量的明确示例。特别是,我们回答了一个由祖克斯科夫斯等人发布的公开问题。
Perfect tensors are the tensors corresponding to the absolutely maximally entangled states, a special type of quantum states of interest in quantum information theory. We establish a method to compute parameterized families of perfect tensors in $(\mathbb{C}^d)^{\otimes 4}$ using exponential maps from Lie theory. With this method, we find explicit examples of non-classical perfect tensors in $(\mathbb{C}^3)^{\otimes 4}$. In particular, we answer an open question posted by Życzkowski et al.