论文标题

使用条件熵第一部分:横断面研究的ADNI的事件时间数据的异质性

Unraveling heterogeneity of ADNI's time-to-event data using conditional entropy Part-I: Cross-sectional study

论文作者

Liao, Shuting, Hsieh, Fushing

论文摘要

通过阿尔茨海默氏病神经影像学倡议(ADNI),事件时间数据:从轻度认知障碍(MCI)到诊断阿尔茨海默氏病(AD)的诊断,通过构造346 Undersored Conferencied在346 Undersised中的构建中,对阿尔茨海默氏病的诊断(AD)进行了分析,并进行了分析。 特征。基于条件-VS-Marginal熵在由重新分配到权利算法构建的意外表中评估的条件-VS-Marginal熵进行了测试和确认。分类探索性数据分析(CEDA)范式用于评估分类响应变量之间基于条件熵的关联模式,针对16个分类的协变量变量,均具有4个类别。两个顺序1的全球主要因素:V9(MEM-MEAN)和V8(ADAS13.BL)与响应变量共享最高量的互信息。 COX的比例危害(pH)建模对此进行了严格审查的数据集。在协变量特征的结构依赖性下,全球尺度上的pH和CEDA结果的比较变得复杂。为了减轻这种并发症,V9和V8被视为异质性​​的两种潜在观点,整个受试者收集被分为两组四个子收集。 CEDA主要因素选择协议应用于所有子收集,以确定哪些功能提供了额外的信息。图形显示的开发是为了根据ADNI数据中异质性的观点明确阐明条件熵的扩展。在本地规模上,进行pH分析,并将结果与​​CEDA进行比较。我们得出的结论是,当面对协变量之间的结构依赖性和数据中的异质性时,CEDA及其主要因素选择为表现数据的多尺度信息内容提供了重要优点。

Through Alzheimer's Disease Neuroimaging Initiative (ADNI), time-to-event data: from the pre-dementia state of mild cognitive impairment (MCI) to the diagnosis of Alzheimer's disease (AD), is collected and analyzed by explicitly unraveling prognostic heterogeneity among 346 uncensored and 557 right censored subjects under structural dependency among covariate features. The non-informative censoring mechanism is tested and confirmed based on conditional-vs-marginal entropies evaluated upon contingency tables built by the Redistribute-to-the-right algorithm. The Categorical Exploratory Data Analysis (CEDA) paradigm is applied to evaluate conditional entropy-based associative patterns between the categorized response variable against 16 categorized covariable variables all having 4 categories. Two order-1 global major factors: V9 (MEM-mean) and V8 (ADAS13.bl) are selected sharing the highest amounts of mutual information with the response variable. This heavily censored data set is analyzed by Cox's proportional hazard (PH) modeling. Comparisons of PH and CEDA results on a global scale are complicated under the structural dependency of covariate features. To alleviate such complications, V9 and V8 are taken as two potential perspectives of heterogeneity and the entire collections of subjects are divided into two sets of four sub-collections. CEDA major factor selection protocol is applied to all sub-collections to figure out which features provide extra information. Graphic displays are developed to explicitly unravel conditional entropy expansions upon perspectives of heterogeneity in ADNI data. On the local scale, PH analysis is carried out and results are compared with CEDA's. We conclude that, when facing structural dependency among covariates and heterogeneity in data, CEDA and its major factor selection provide significant merits for manifesting data's multiscale information content.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源