论文标题
重新连接
Reconnectads
论文作者
论文摘要
我们介绍了一种新的类似Operad的结构,我们称之为Reconnectad;重新连接的元素的``输入''是一个有限的简单图,而不是有限的集合,并且根据重新连接的子刻度补充的概念,执行了元素的``组成''。重新连接的原型示例是由Carr和Devadoss的图形相关的感谢您的曲折品种的收集给出的,其结构操作由轨道封闭的包含物提供。我们开发了重新连接的一般理论,并使用它来研究``奇妙的重新指定''从图形相关的复杂曲折品种的同源群中组装的``奇妙的重新汇报''。
We introduce a new operad-like structure that we call a reconnectad; the ``input'' of an element of a reconnectad is a finite simple graph, rather than a finite set, and ``compositions'' of elements are performed according to the notion of the reconnected complement of a subgraph. The prototypical example of a reconnectad is given by the collection of toric varieties of graph associahedra of Carr and Devadoss, with the structure operations given by inclusions of orbits closures. We develop the general theory of reconnectads, and use it to study the ``wonderful reconnectad'' assembled from homology groups of complex toric varieties of graph associahedra.