论文标题

热带和对数地图的通用性

Universality for tropical and logarithmic maps

论文作者

Corrigan, Gabriel, Nabijou, Navid, Simms, Dan

论文摘要

我们证明,每个复曲面的单体都出现在从热带曲线到矫正的地图空间中。随之而来的是,与Artin粉丝的对数地图的空间展现了任意的曲折奇点:对数地图成对的虚拟通用定理。目标级别取决于所选的奇异性:我们表明,7 gon上的圆锥体从未出现在地图上的级别1目标中。我们获得了热带图与仿射空间的相似结果。

We prove that every toric monoid appears in a space of maps from tropical curves to an orthant. It follows that spaces of logarithmic maps to Artin fans exhibit arbitrary toric singularities: a virtual universality theorem for logarithmic maps to pairs. The target rank depends on the chosen singularity: we show that the cone over the 7-gon never appears in a space of maps to a rank 1 target. We obtain similar results for tropical maps to affine space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源