论文标题
根据特征值的功能变异方法
A variational method for functionals depending on eigenvalues
论文作者
论文摘要
我们根据riemannian歧管的特征值对功能进行系统的变分方法。它基于一个新的宫殿序列概念,该序列可以构建,这要归功于对$ c^1 $函数对本地lipschitz函数的概括。我们证明了这些palais-smale序列的融合结果,该序列是从laplace特征值组合或维度2中的steklov特征值组合出现的。
We perform a systematic variational method for functionals depending on eigenvalues of Riemannian manifolds. It is based on a new concept of Palais Smale sequences that can be constructed thanks to a generalization of classical min-max methods on $C^1$ functionals to locally-Lipschitz functionals. We prove convergence results on these Palais-Smale sequences emerging from combinations of Laplace eigenvalues or combinations of Steklov eigenvalues in dimension 2.