论文标题
几乎没有信号表面协作正则化的非线视觉成像
Few-shot Non-line-of-sight Imaging with Signal-surface Collaborative Regularization
论文作者
论文摘要
非视线成像技术旨在从倍增的光中重建目标。对于大多数现有方法,对继电器表面上的致密点进行了栅格扫描以获得高质量的重建,这需要长时间的收购时间。在这项工作中,我们提出了一个信号表面协作正则化(SSCR)框架,该框架可提供噪声重建,并以最少的测量数量。使用贝叶斯推断,我们设计了估计信号,基于3D Voxel的对象的表示的联合正规化以及目标的基于2D表面的描述。据我们所知,这是将正规化在隐藏目标的混合维度中结合在一起的第一部作品。合成和实验数据集的实验说明了共焦和非共焦焦点设置下所提出方法的效率和鲁棒性。我们报告了隐藏目标的重建,该目标具有复杂的几何结构,仅$ 5 \ times 5 $从公共数据集中进行共焦测量,表明传统测量过程加速了10000倍。此外,提出的方法还具有较低的时间和稀疏测量的记忆复杂性。我们的方法在实时非视线成像应用中具有巨大潜力,例如救援操作和自动驾驶。
The non-line-of-sight imaging technique aims to reconstruct targets from multiply reflected light. For most existing methods, dense points on the relay surface are raster scanned to obtain high-quality reconstructions, which requires a long acquisition time. In this work, we propose a signal-surface collaborative regularization (SSCR) framework that provides noise-robust reconstructions with a minimal number of measurements. Using Bayesian inference, we design joint regularizations of the estimated signal, the 3D voxel-based representation of the objects, and the 2D surface-based description of the targets. To our best knowledge, this is the first work that combines regularizations in mixed dimensions for hidden targets. Experiments on synthetic and experimental datasets illustrated the efficiency and robustness of the proposed method under both confocal and non-confocal settings. We report the reconstruction of the hidden targets with complex geometric structures with only $5 \times 5$ confocal measurements from public datasets, indicating an acceleration of the conventional measurement process by a factor of 10000. Besides, the proposed method enjoys low time and memory complexities with sparse measurements. Our approach has great potential in real-time non-line-of-sight imaging applications such as rescue operations and autonomous driving.