论文标题

与专家神经放射学家相比

Non-inferiority of Deep Learning Acute Ischemic Stroke Segmentation on Non-Contrast CT Compared to Expert Neuroradiologists

论文作者

Ostmeier, Sophie, Axelrod, Brian, Verhaaren, Benjamin F. J., Christensen, Soren, Mahammedi, Abdelkader, Liu, Yongkai, Pulli, Benjamin, Li, Li-Jia, Zaharchuk, Greg, Heit, Jeremy J.

论文摘要

为了确定与神经放射科医生相比,卷积神经网络(CNN)是否可以准确地对非对比度CT进行急性缺血性变化。本研究包括参加了232名急性缺血性卒中患者的非对比度CT(NCCT)检查,这些患者被纳入了Defuse 3试验。三位经验丰富的神经放射学家独立分割了低调,反映了每次扫描中的缺血核心。具有最多经验的神经放射科医生(专家A)是深度学习模型培训的基础真理。另外两名神经放射学家(专家B和C)进行了分段进行数据测试。 232项研究被随机分为训练和测试集。通过训练和验证集,将训练组进一步随机分为5倍。对3维的CNN体​​系结构进行了训练和优化,以预测NCCT的专家A分割。使用一组体积,重叠和距离指标评估模型的性能,使用20%,3ML和3mm的非效率阈值。与测试专家B和C进行了比较的优化模型B和C。我们使用了单方面的Wilcoxon签名级测试来测试与Expert协议相比,模型expert的非效率。当对专家A培训时,与两个测试神经辐射学家进行培训时,缺血性核心分割任务的最终模型性能达到了0.46+-0.09的表面骰子,以5mm的5mm和0.47+-0.13骰子的表面骰子,与两个测试神经读物学家相比,模型 - 外术一致性与Inter-Expert Encelage协议无效,p <0.05。 CNN准确地描绘了急性缺血性卒中患者NCCT上的缺血性核心,其精度与神经放射学家相当。

To determine if a convolutional neural network (CNN) deep learning model can accurately segment acute ischemic changes on non-contrast CT compared to neuroradiologists. Non-contrast CT (NCCT) examinations from 232 acute ischemic stroke patients who were enrolled in the DEFUSE 3 trial were included in this study. Three experienced neuroradiologists independently segmented hypodensity that reflected the ischemic core on each scan. The neuroradiologist with the most experience (expert A) served as the ground truth for deep learning model training. Two additional neuroradiologists (experts B and C) segmentations were used for data testing. The 232 studies were randomly split into training and test sets. The training set was further randomly divided into 5 folds with training and validation sets. A 3-dimensional CNN architecture was trained and optimized to predict the segmentations of expert A from NCCT. The performance of the model was assessed using a set of volume, overlap, and distance metrics using non-inferiority thresholds of 20%, 3ml, and 3mm. The optimized model trained on expert A was compared to test experts B and C. We used a one-sided Wilcoxon signed-rank test to test for the non-inferiority of the model-expert compared to the inter-expert agreement. The final model performance for the ischemic core segmentation task reached a performance of 0.46+-0.09 Surface Dice at Tolerance 5mm and 0.47+-0.13 Dice when trained on expert A. Compared to the two test neuroradiologists the model-expert agreement was non-inferior to the inter-expert agreement, p < 0.05. The CNN accurately delineates the hypodense ischemic core on NCCT in acute ischemic stroke patients with an accuracy comparable to neuroradiologists.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源