论文标题

通过基于图的主动奖励学习发现可普遍的空间目标表示

Discovering Generalizable Spatial Goal Representations via Graph-based Active Reward Learning

论文作者

Netanyahu, Aviv, Shu, Tianmin, Tenenbaum, Joshua, Agrawal, Pulkit

论文摘要

在这项工作中,我们考虑了对象重排任务的一击模仿学习,其中AI代理需要观看单个专家演示并学会在不同环境中执行相同的任务。为了实现强大的概括,AI代理必须推断任务的空间目标规范。但是,可以有多个适合给定演示的目标规范。为了解决这个问题,我们提出了一种奖励学习方法,基于图的等价映射(GEM),可以发现与预期的目标规范一致的空间目标表示,从而在未看到的环境中获得成功的概括。具体而言,GEM代表一个空间目标规范,该奖励函数在i)图表上表明对象和ii)图表中每个边缘的状态等效映射之间的重要空间关系,指示相应关系的不变属性。 GEM结合了逆增强学习和主动奖励学习,通过利用图形结构和域随机化来有效地提高奖励功能,从而通过等价映射启用。我们对模拟的口腔和人类受试者进行了实验。结果表明,宝石可以大大提高学习目标表征的普遍性,而不是强基础。

In this work, we consider one-shot imitation learning for object rearrangement tasks, where an AI agent needs to watch a single expert demonstration and learn to perform the same task in different environments. To achieve a strong generalization, the AI agent must infer the spatial goal specification for the task. However, there can be multiple goal specifications that fit the given demonstration. To address this, we propose a reward learning approach, Graph-based Equivalence Mappings (GEM), that can discover spatial goal representations that are aligned with the intended goal specification, enabling successful generalization in unseen environments. Specifically, GEM represents a spatial goal specification by a reward function conditioned on i) a graph indicating important spatial relationships between objects and ii) state equivalence mappings for each edge in the graph indicating invariant properties of the corresponding relationship. GEM combines inverse reinforcement learning and active reward learning to efficiently improve the reward function by utilizing the graph structure and domain randomization enabled by the equivalence mappings. We conducted experiments with simulated oracles and with human subjects. The results show that GEM can drastically improve the generalizability of the learned goal representations over strong baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源