论文标题
通过动作角度网络学习可整合的动态
Learning Integrable Dynamics with Action-Angle Networks
论文作者
论文摘要
机器学习已变得越来越流行,可以有效地对复杂物理系统的动态进行建模,从而证明了学习有效模型的能力,这些模型忽略了冗余自由度。学习的模拟器通常通过数值集成技术逐步预测系统的演变。但是,由于在每个预测步骤中估计和集成误差的积累,这种模型通常会遭受长期推出的不稳定。在这里,我们为学习的物理模拟器提出了一种替代构造,该构造灵感来自经典力学的动作角度坐标概念,用于描述整合系统。我们提出了动作角度网络,该网络学习了从输入坐标到动作角度空间的非线性转换,其中系统的演变是线性的。与传统的学习模拟器不同,动作角网络不采用任何高阶数值集成方法,这使得它们在建模可集成物理系统的动态方面非常有效。
Machine learning has become increasingly popular for efficiently modelling the dynamics of complex physical systems, demonstrating a capability to learn effective models for dynamics which ignore redundant degrees of freedom. Learned simulators typically predict the evolution of the system in a step-by-step manner with numerical integration techniques. However, such models often suffer from instability over long roll-outs due to the accumulation of both estimation and integration error at each prediction step. Here, we propose an alternative construction for learned physical simulators that are inspired by the concept of action-angle coordinates from classical mechanics for describing integrable systems. We propose Action-Angle Networks, which learn a nonlinear transformation from input coordinates to the action-angle space, where evolution of the system is linear. Unlike traditional learned simulators, Action-Angle Networks do not employ any higher-order numerical integration methods, making them extremely efficient at modelling the dynamics of integrable physical systems.