论文标题

流量:通过动态路由的人为个性化的联合学习

Flow: Per-Instance Personalized Federated Learning Through Dynamic Routing

论文作者

Panchal, Kunjal, Choudhary, Sunav, Parikh, Nisarg, Zhang, Lijun, Guan, Hui

论文摘要

联邦学习(FL)中的个性化旨在根据每个客户修改经过协作的全球模型。当前在FL中的个性化方法是粗粒度,即客户的所有输入实例都使用相同的个性化模型。这忽略了以下事实:由于更好的概括性,某些实例被全球模型更准确地处理。为了应对这一挑战,这项工作提出了流量,这是一种细粒度的无状态个性化的FL方法。 Flow通过学习一个路由机制来确定输入实例是否更喜欢本地参数或其全局对应物来创建动态的个性化模型。因此,除了利用每个客户个性化以提高每个客户的准确性外,Flow还引入了每种命令路由。此外,流程是无状态的,这使得客户不需要在FL轮循环中保留其个性化状态。这使得对大型FL设置的流程很可行,并且对新近加入的客户友好。对Stackoverflow,Reddit和Emnist数据集的评估表明,流量的预测准确性优于最先进的非个人化和唯一的人为个性化方法。

Personalization in Federated Learning (FL) aims to modify a collaboratively trained global model according to each client. Current approaches to personalization in FL are at a coarse granularity, i.e. all the input instances of a client use the same personalized model. This ignores the fact that some instances are more accurately handled by the global model due to better generalizability. To address this challenge, this work proposes Flow, a fine-grained stateless personalized FL approach. Flow creates dynamic personalized models by learning a routing mechanism that determines whether an input instance prefers the local parameters or its global counterpart. Thus, Flow introduces per-instance routing in addition to leveraging per-client personalization to improve accuracies at each client. Further, Flow is stateless which makes it unnecessary for a client to retain its personalized state across FL rounds. This makes Flow practical for large-scale FL settings and friendly to newly joined clients. Evaluations on Stackoverflow, Reddit, and EMNIST datasets demonstrate the superiority in prediction accuracy of Flow over state-of-the-art non-personalized and only per-client personalized approaches to FL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源