论文标题
稀疏边缘编码器(请参阅):I。神经元网络中的视觉识别
Sparse Edge Encoder (SEE): I. Visual recognition in neuronal networks
论文作者
论文摘要
在过去的几十年中,大脑是否处于临界状态,存在激烈的辩论。为了验证神经元网络中的关键性假设具有挑战性,目前累积的实验和理论结果仍然存在争议。在这里,我们模拟有限的Kinouchi-copelli神经元网络如何处理自然图像的视觉信息,从而提取了共同信息的趋势(神经元网络的敏感程度),动态范围(网络对外部刺激的敏感度敏感)和统计波动(统计波动程度如何)(在常规统计学中定义了批判性统计)。相当值得注意的是,视觉识别的优化状态虽然接近,但与统计波动达到最大值的临界状态并不一致。当然,不同的图像和/或网络大小会导致细节差异,但信息优化的趋势保持不变。我们的发现铺平了第一步,是研究如何在不同的神经元网络中优化信息处理的第一步,并暗示可能没有必要说明神经元网络可以巧妙地处理信息的关键假设。
In the past few decades, there have been intense debates whether the brain operates at a critical state. To verify the criticality hypothesis in the neuronal networks is challenging and the accumulating experimental and theoretical results remain controversial at this point. Here we simulate how visual information of a nature image is processed by the finite Kinouchi-Copelli neuronal network, extracting the trends of the mutual information (how sensible the neuronal network is), the dynamical range (how sensitive the network responds to external stimuli) and the statistical fluctuations (how criticality is defined in conventional statistical physics). It is rather remarkable that the optimized state for visual recognition, although close to, does not coincide with the critical state where the statistical fluctuations reach the maximum. Different images and/or network sizes of course lead to differences in details but the trend of the information optimization remains the same. Our findings pave the first step to investigate how the information processing is optimized in different neuronal networks and suggest that the criticality hypothesis may not be necessary to explain why a neuronal network can process information smartly.