论文标题

通过诱导的持久性条形码匹配,拓扑忠实的图像分割

Topologically faithful image segmentation via induced matching of persistence barcodes

论文作者

Stucki, Nico, Paetzold, Johannes C., Shit, Suprosanna, Menze, Bjoern, Bauer, Ulrich

论文摘要

图像细分是一个经过大量研究的领域,神经网络在许多技术方面都可以找到大量应用。训练分割网络的一些最受欢迎的方法采用损失功能来优化像素 - 反lap,这一目标不足以用于许多细分任务。近年来,它们的局限性引起了人们对拓扑感知方法的日益兴趣,该方法旨在恢复分段结构的正确拓扑。但是,到目前为止,现有的方法都没有达到地面真理和预测的拓扑特征之间在空间上正确的匹配。 在这项工作中,我们为监督的图像分割提出了第一个拓扑和特征准确的度量和损耗函数,我们将其称为Betti匹配。我们展示了诱导的匹配如何确保在分割设置中条形码之间的空间正确匹配。此外,我们提出了一种有效的算法来计算图像的Betti匹配。我们表明,Betti匹配误差是一个可解释的度量标准,可以评估分割的拓扑正确性,这比公认的Betti数字误差更敏感。此外,Betti匹配损失的不同性使其可以用作损失函数。它改善了六个不同数据集的分割网络的拓扑性能,同时保留了体积性能。我们的代码可在https://github.com/nstucki/betti-matching中找到。

Image segmentation is a largely researched field where neural networks find vast applications in many facets of technology. Some of the most popular approaches to train segmentation networks employ loss functions optimizing pixel-overlap, an objective that is insufficient for many segmentation tasks. In recent years, their limitations fueled a growing interest in topology-aware methods, which aim to recover the correct topology of the segmented structures. However, so far, none of the existing approaches achieve a spatially correct matching between the topological features of ground truth and prediction. In this work, we propose the first topologically and feature-wise accurate metric and loss function for supervised image segmentation, which we term Betti matching. We show how induced matchings guarantee the spatially correct matching between barcodes in a segmentation setting. Furthermore, we propose an efficient algorithm to compute the Betti matching of images. We show that the Betti matching error is an interpretable metric to evaluate the topological correctness of segmentations, which is more sensitive than the well-established Betti number error. Moreover, the differentiability of the Betti matching loss enables its use as a loss function. It improves the topological performance of segmentation networks across six diverse datasets while preserving the volumetric performance. Our code is available in https://github.com/nstucki/Betti-matching.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源