论文标题
在$ l^2(x; \ mc h)$中的乘法不变空间之间的上余弦角的应用
An Application of the supremum cosine angle between multiplication invariant spaces in $L^2(X; \mc H)$
论文作者
论文摘要
在本文中,我们描述了两个乘法不变(MI)空间之间的上余弦角及其与这些空间总和的闭合度的联系。 MI空间获得的结果几乎由相应的纤维空间保留。采用Zak变换,我们通过其封闭的Abelian亚组的作用在局部紧凑型组上获得翻译不变空间的结果。此外,我们将结果应用于抽样理论。
In this article, we describe the supremum cosine angle between two multiplication invariant (MI) spaces and its connection with the closedness of the sum of those spaces. The results obtained for MI spaces are preserved by the corresponding fiber spaces almost everywhere. Employing the Zak transform, we obtain the results for translation invariant spaces on locally compact groups by action of its closed abelian subgroup. Additionally, we provide the application of our results to sampling theory.