论文标题

较弱

Weak Hopf Algebras, Smash Products and Applications to Adjoint-Stable Algebras

论文作者

Liu, Zhimin, Zhu, Shenglin

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

For a semisimple quasi-triangular Hopf algebra $\left( H,R\right) $ over a field $k$ of characteristic zero, and a strongly separable quantum commutative $H$-module algebra $A$ over which the Drinfeld element of $H$ acts trivially, we show that $A\#H$ is a weak Hopf algebra, and it can be embedded into a weak Hopf algebra $\operatorname{End}A^{\ast}\otimes H$. With these structure, $_{A\#H}\operatorname{Mod}$ is the monoidal category introduced by Cohen and Westreich, and $_{\operatorname{End}A^{\ast}\otimes H}\mathcal{M}$ is tensor equivalent to $_{H}\mathcal{M}$. If $A$ is in the M{ü}ger center of $_{H}{\mathcal{M}}$, then the embedding is a quasi-triangular weak Hopf algebra morphism. This explains the presence of a subgroup inclusion in the characterization of irreducible Yetter-Drinfeld modules for a finite group algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源