论文标题

部分可观测时空混沌系统的无模型预测

Incremental Spatial and Spectral Learning of Neural Operators for Solving Large-Scale PDEs

论文作者

George, Robert Joseph, Zhao, Jiawei, Kossaifi, Jean, Li, Zongyi, Anandkumar, Anima

论文摘要

傅立叶神经操作员(FNO)提供了一种解决挑战性偏微分方程(PDE)(例如湍流)的原则方法。 FNO的核心是一个光谱层,该光谱层利用傅立叶域中的离散化 - 串联表示形式,并在固定频率集上学习权重。但是,FNO培训提出了两个重大挑战,尤其是在大规模高分辨率的应用中:(i)计算高分辨率输入上的傅立叶变换在计算上是必要的,但由于要求解许多PDE所需的细节,因此需要进行许多PDE,例如流体流量,例如,(ii)在相关的频率方面进行挑战,并且在光谱中挑战太多,并且可以挑战相关的范围,并且可以挑战频率,并挑战频率,并挑战范围。不足。为了解决这些问题,我们介绍了增量的傅立叶神经操作员(IFNO),该神经操作员逐渐增加了模型使用的频率模式的数量以及训练数据的分辨率。我们从经验上表明,IFNO在维持或改善各个数据集的概括性能的同时减少了总训练时间。我们的方法表明,与现有的傅立叶神经操作员相比,使用频率模式少20%,同时还要实现30%的训练速度,使用频率模式少20%。

Fourier Neural Operators (FNO) offer a principled approach to solving challenging partial differential equations (PDE) such as turbulent flows. At the core of FNO is a spectral layer that leverages a discretization-convergent representation in the Fourier domain, and learns weights over a fixed set of frequencies. However, training FNO presents two significant challenges, particularly in large-scale, high-resolution applications: (i) Computing Fourier transform on high-resolution inputs is computationally intensive but necessary since fine-scale details are needed for solving many PDEs, such as fluid flows, (ii) selecting the relevant set of frequencies in the spectral layers is challenging, and too many modes can lead to overfitting, while too few can lead to underfitting. To address these issues, we introduce the Incremental Fourier Neural Operator (iFNO), which progressively increases both the number of frequency modes used by the model as well as the resolution of the training data. We empirically show that iFNO reduces total training time while maintaining or improving generalization performance across various datasets. Our method demonstrates a 10% lower testing error, using 20% fewer frequency modes compared to the existing Fourier Neural Operator, while also achieving a 30% faster training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源