论文标题
部分可观测时空混沌系统的无模型预测
On the Sample Complexity of Representation Learning in Multi-task Bandits with Global and Local structure
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We investigate the sample complexity of learning the optimal arm for multi-task bandit problems. Arms consist of two components: one that is shared across tasks (that we call representation) and one that is task-specific (that we call predictor). The objective is to learn the optimal (representation, predictor)-pair for each task, under the assumption that the optimal representation is common to all tasks. Within this framework, efficient learning algorithms should transfer knowledge across tasks. We consider the best-arm identification problem for a fixed confidence, where, in each round, the learner actively selects both a task, and an arm, and observes the corresponding reward. We derive instance-specific sample complexity lower bounds satisfied by any $(δ_G,δ_H)$-PAC algorithm (such an algorithm identifies the best representation with probability at least $1-δ_G$, and the best predictor for a task with probability at least $1-δ_H$). We devise an algorithm OSRL-SC whose sample complexity approaches the lower bound, and scales at most as $H(G\log(1/δ_G)+ X\log(1/δ_H))$, with $X,G,H$ being, respectively, the number of tasks, representations and predictors. By comparison, this scaling is significantly better than the classical best-arm identification algorithm that scales as $HGX\log(1/δ)$.