论文标题
部分可观测时空混沌系统的无模型预测
Robot Kinematics: Motion, Kinematics and Dynamics
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This is a follow-up tutorial article of our previous article entitled "Robot Basics: Representation, Rotation and Velocity". For better understanding of the topics covered in this articles, we recommend the readers to first read our previous tutorial article on robot basics. Specifically, in this article, we will cover some more advanced topics on robot kinematics, including robot motion, forward kinematics, inverse kinematics, and robot dynamics. For the topics, terminologies and notations introduced in the previous article, we will use them directly without re-introducing them again in this article. Also similar to the previous article, math and formulas will also be heavily used in this article as well (hope the readers are well prepared for the upcoming math bomb). After reading this article, readers should be able to have a deeper understanding about how robot motion, kinematics and dynamics. As to some more advanced topics about robot control, we will introduce them in the following tutorial articles for readers instead.