论文标题
部分可观测时空混沌系统的无模型预测
Inter-KD: Intermediate Knowledge Distillation for CTC-Based Automatic Speech Recognition
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Recently, the advance in deep learning has brought a considerable improvement in the end-to-end speech recognition field, simplifying the traditional pipeline while producing promising results. Among the end-to-end models, the connectionist temporal classification (CTC)-based model has attracted research interest due to its non-autoregressive nature. However, such CTC models require a heavy computational cost to achieve outstanding performance. To mitigate the computational burden, we propose a simple yet effective knowledge distillation (KD) for the CTC framework, namely Inter-KD, that additionally transfers the teacher's knowledge to the intermediate CTC layers of the student network. From the experimental results on the LibriSpeech, we verify that the Inter-KD shows better achievements compared to the conventional KD methods. Without using any language model (LM) and data augmentation, Inter-KD improves the word error rate (WER) performance from 8.85 % to 6.30 % on the test-clean.