论文标题

部分可观测时空混沌系统的无模型预测

Characterizing Reaction Route Map of Realistic Molecular Reactions based on Weight Rank Clique Filtration of Persistent Homology

论文作者

Murayama, Burai, Kobayashi, Masato, Aoki, Masamitsu, Ishibashi, Suguru, Saito, Takuya, Nakamura, Takenobu, Teramoto, Hiroshi, Taketsugu, Tetsuya

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

A reaction route map (RRM) constructed using the GRRM program is a collection of elementary reaction pathways, each of which comprises two equilibrium (EQ) geometries and one transition state (TS) geometry connected by an intrinsic reaction coordinate (IRC). An RRM can be mathematically represented by a graph with weights assigned to both vertices, corresponding to EQs, and edges, corresponding to TSs, representing the corresponding energies. In this study, we propose a method to extract topological descriptors of a weighted graph representing an RRM based on persistent homology (PH). The work of Mirth et al. [J. Chem. Phys. 2021, 154, 114114], in which PH analysis was applied to the (3N-6)-dimensional potential energy surface of an N atomic system, is related to the present method, but our method is practically applicable to realistic molecular reactions. Numerical assessments revealed that our method can extract the same information as the method proposed by Mirth et al. for the 0-th and 1-st PHs, except for the death of the 1-st PH. In addition, the information obtained from the 0-th PH corresponds to the analysis using the disconnectivity graph. The results of this study suggest that the descriptors obtained using the proposed method accurately reflect the characteristics of the chemical reactions and/or physicochemical properties of the system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源